
 📧training@apps2fusion.com 📧consulting@fusionpractices.com

PYTHON

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Language Fundamentals

Introduction

● Python is a general purpose high level programming language.

● Python was developed by Guido Van Rossam in 1989 while working at National Research Institute at

Netherlands.

● But officially Python was made available to public in 1991. The official Date of Birth for Python is :

Feb 20th 1991.

● Python is recommended as first programming language for beginners.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Eg1: To print Hello world:

Java : C : Python :

1) public class HelloWorld 1) #include <stdio.h> print(“Hello world”)

2) { 2) void.main()

3) p s v main(String[] args) 3) {

4) { 4) print("Hello
SOP(‘Hello world");

5) } 5) }
6) }

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Eg2: To print the sum of 2 numbers

 JAVA :

1. public class Add

2. {

3. public static void main(String[]

args)

4. {

5. int a,b;

6. a =10;

7. b=20;

8. System.out.println("The

Sum:"+(a+b));

9. }

10. }

C:

1. #include <stdio.h>

2. void main()

3. int a,b;

4. {

5. a =10;

6. b=20;

7. printf("The Sum:%d",(a+b));

8. }:

Python:

1. a=10

2. b=20

3. print("The Sum:",(a+b))

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Python History

The name Python was selected from the TV Show "The Complete

Monty Python's Circus", which was broadcasted in BBC from 1969 to

1974.

 Guido developed Python language by taking almost all programming features from different languages

1. 1. Functional Programming Features from C

2. 2. Object Oriented Programming Features from C++

3. 3. Scripting Language Features from Perl and Shell Script

4. Modular Programming Features from Modula-3

Most of syntax in Python Derived is from C and ABC languages.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Where we can use Python:

We can use everywhere. The most common important application areas are

1. For developing Desktop Applications

2. For developing web Applications

3. For developing database Applications

4. For Network Programming

5. For developing games

6. For Data Analysis Applications

7. For Machine Learning

8. For developing Artificial Intelligence Applications

9. For IOT

Note:

Internally Google and Youtube use

Python coding

NASA and Network Stock Exchange

Applications developed by Python.

Top Software companies like Google,

Microsoft, IBM, Yahoo using Python.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Features of Python:

1. Simple and easy to learn:

 Python is a simple programming language. When we read Python program,we can feel like reading english
statements.

The syntaxes are very simple and only 30+ keywords are available.

When compared with other languages, we can write programs with very less number of lines. Hence more
readability and simplicity.

We can reduce development and cost of the project.

2. Freeware and Open Source:

 We can use Python software without any licence and it is freeware.

 Its source code is open,so that we can we can customize based on our requirement. Eg: Jython is
customized version of Python to work with Java Applications.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Features of Python: (contd.)

3. High Level Programming language:

Python is high level programming language and hence it is programmer friendly language. Being a
programmer we are not required to concentrate low level activities like memory management and
security etc..

4. Platform Independent:

Once we write a Python program,it can run on any platform without rewriting once again. Internally
PVM is responsible to convert into machine understandable form.

5. Portability:

Python programs are portable. ie we can migrate from one platform to another platform very easily.
Python programs will provide same results on any platform.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Features of Python: (contd.)

6. Dynamically Typed:

 In Python we are not required to declare type for variables. Whenever we are assigning the value, based

on value, type will be allocated automatically.Hence Python is considered as dynamically typed language.

But Java, C etc are Statically Typed Languages b'z we have to provide type at the beginning only.This

dynamic typing nature will provide more flexibility to the programmer.

 7. Both Procedure Oriented and Object Oriented:

Python language supports both Procedure oriented (like C, pascal etc) and object oriented (like C++,Java)

features. Hence we can get benefits of both like security and reusability etc

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Features of Python: (contd.)

8. Interpreted:

We are not required to compile Python programs explicitly. Internally Python interpreter will take

care that compilation.

 If compilation fails interpreter raised syntax errors. Once compilation success then PVM (Python Virtual

Machine) is responsible to execute.

9. Extensible:

 We can use other language programs in Python. The main advantages of this approach are:

1. We can use already existing legacy non-Python code

2. We can improve performance of the application

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Features of Python: (contd.)

10. Embedded:

We can use Python programs in any other language programs.

i.e we can embed Python programs anywhere.

 11. Extensive Library:

 Python has a rich inbuilt library. Being a programmer we can use this library directly and we are not

responsible to implement the functionality.

 etc...

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Limitations of Python:

1. Performance wise not up to the mark b'z it is interpreted language.

2. Not using for mobile Applications

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Flavors of Python:

1. CPython : It is the standard flavor of Python. It can be used to work with C language Applications

2. Jython or JPython : It is for Java Applications. It can run on JVM

3. IronPython : It is for C#.Net platform

4. PyPy : The main advantage of PyPy is performance will be improved because JIT compiler is available

inside PVM.

 5. RubyPython : For Ruby Platforms

 6. AnacondaPython : It is specially designed for handling large volume of data processing.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Python Versions

Python Versions:

Python 1.0V introduced in Jan 1994 Python 2.0V introduced in October 2000 Python 3.0V introduced in

December 2008

Note: Python 3 won't provide backward compatibility to Python2

i.e there is no guarantee that Python2 programs will run in Python3.

Current versions :

 Python 3.6.1, Python 2.7.13

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Identifiers

A name in Python program is called identifier. It can be class name or function name or module name or
variable name. a = 10

Rules to define identifiers in Python:
 1. The only allowed characters in Python are

● alphabet symbols(either lower case or upper case)
● digits(0 to 9)
● underscore symbol(_)

By mistake if we are using any other symbol like $ then we will get syntax error.

● cash = 10 (right)
● ca$h =20 (wrong)

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Identifiers

2. Identifier should not starts with digit

● 123total (wrong)

● total123 (right)

 3. Identifiers are case sensitive. Of course Python language is case sensitive language.

● total=10

● TOTAL=999

● print(total) #10

● print(TOTAL) #999

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Identifier :

1. Alphabet Symbols (Either Upper case OR Lower case)

2. If Identifier is start with Underscore (_) then it indicates it is private.

3. Identifier should not start with Digits.

4. Identifiers are case sensitive.

5. We cannot use reserved words as identifiers Eg: def=10 (wrong)

6. There is no length limit for Python identifiers. But not recommended to use too lengthy identifiers.

7. Dollor ($) Symbol is not allowed in Python.

Q. Which of the following are valid Python identifiers?

1. 123total (wrong)

2. total123 (right)

3. java2share (right)

4. ca$h (wrong)

4. _abc_abc_ √
5. def (wrong)

6. if (wrong)

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Identifier :

Note:

1. If identifier starts with _ symbol then it indicates that it is private

2. If identifier starts with (two underscore symbols) indicating that strongly private identifier.

3.If the identifier starts and ends with two underscore symbols then the identifier is language

defined special name,which is also known as magic methods.

Eg: _add_

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

In Python some words are reserved to represent some meaning or functionality. Such type of words are

called Reserved words.

There are 33 reserved words available in Python.

● True,False,None

● and, or ,not,is

● if,elif,else

● while,for,break,continue,return,in,yield

● try,except,finally,raise,assert

● import,from,as,class,def,pass,global,nonlocal,lambda,del,with

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Note:

1. All Reserved words in Python contain only alphabet symbols.

 2. Except the following 3 reserved words, all contain only lower case alphabet symbols.

● True

● False

● None

Eg: a= true (wrong)

a=True (right)

>>> import keyword

>>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else','except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or',
'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

Reserved Words

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Eg: a= true (wrong)

a=True (right)

>>> import keyword

>>> keyword.kwlist

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else','except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or',
'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

Reserved Words

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Type represent the type of data present inside a variable.

In Python we are not required to specify the type explicitly. Based on value provided,the type will be

assigned automatically.Hence Python is Dynamically Typed Language.

Python contains the following inbuilt data types

1. Int 9. list

2. Float 10.tuple

3. complex 11.set

4. Bool 12.frozenset

5. str 13.dict

6. bytes 14.None

7. Bytearray

8. 8.range

Data Types

a

a
b

a=10
a=20

a=10
b=10

10

20

10

a=10
a=20

a=10
b=10

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Note: Python contains several inbuilt functions

1. type() - to check the type of variable

2. id() - to get address of object

3. print() - to print the value

 In Python everything is object

int data type:We can use int data type to represent whole numbers (integral values) Eg:

a=10

type(a) #int

Data Types

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Note : In Python2 we have long data type to represent very large integral values.

But in Python3 there is no long type explicitly and we can represent long values also by using int type only.

We can represent int values in the following ways

1. Decimal form

2. Binary form

3. Octal form

4. Hexa decimal form

Data Types

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

1. Decimal form(base-10):

It is the default number system in Python.

The allowed digits are: 0 to 9

Eg: a =10

2. Binary form(Base-2):

The allowed digits are : 0 & 1

Literal value should be prefixed with 0b or 0B

Eg: a = 0B1111 a = 0B123

1. Octal Form(Base-8):

The allowed digits are : 0 to 7

Literal value should be prefixed with 0o or 0O.

a=b111

Eg : a=0o123

a=0o786

Data Types

4. Hexa Decimal Form(Base-16):

The allowed digits are : 0 to 9, a-f (both lower and upper

cases are allowed) Literal value should be prefixed

with 0x or 0X

Eg:

a =0XFACE a=0XBeef a =0XBeer

Note: Being a programmer we can specify literal values
in decimal, binary, octal and hexa decimal forms. But
PVM will always provide values only in decimal form.

a=10

b=0o10 c=0X10 d=0B10

print(a)10 print(b)8 print(c)16 print(d)2

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Note: Being a programmer we can specify literal values in decimal, binary, octal and hexadecimal forms. But PVM
will always provide values only in decimal form.
a=10

b=0o10

c=0X10

d=0B10

print(a)10

print(b)8

print(c)16

print(d)2

Data Types

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Base Conversions

1.) bin():

We can use bin() to convert from

any base to binary

Eg :

1. >>>bin(15)

2. 0b1111

3. >>>bin(0o11)

4. 0b1001

5. >>>bin(0X10)

6. 0b10000

Python provides the following in-built functions for base conversions

2.) oct() :

We can use oct() to convert

from any base to octal

Eg :

1. >>>oct(10)

2. ‘0o12’

3. >>>oct(0B1111)

4. ‘0o17’

5. >>>oct(0X123)

6. ‘0o443’

3.) hex() :

We can use hex() to convert

from any base to hexadecimal

Eg :

1. >>>hex(100)

2. ‘0x64’

3. >>>hex(0B111111)

4. ‘0x3f’

5. >>>hex(0o12345)

6. ‘0x14e5’

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types

Float data type :

We can use float data type to represent floating point values (decimal values)

Eg : f=1.234

 type(f) float

We can also represent floating point values by using exponential form (scientific form)

Eg : f=1.2e3

print(f)1200.0

Instead of ‘e’ we can use ‘E’

The main advantage of exponential form is we can represent big values in less memory.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types

***Note:

We can represent int values in decimal, binary, octal and hexadecimal forms. But we can represent float values

only by using decimal form.

Eg :

1.) >>>f=0B11.01

2.) File “<stdin>”, line 1

3.) f=0B11.01

4.) ^

5.) SyntaxError: invalid syntax

6.)

7.)>>>f=0o123.456

8.)SyntaxError: invalid syntax

9.)

10.) >>>f=0X123.456

11.) SyntaxError: invalid syntax

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types
Complex Data Type

A complex number is of the form :

a & b contain integers or floating point values

Eg :

3+5j

10+5.5j

0.5+0.1j

 j2 = -1
a+bi i =

Real part Imaginary
part

In the real part if we use int value then we can

specify that either by decimal,octal,binary or

hexadecimal form.

But imaginary part should be specified only by

using decimal form.

1. >>> a=0B11+5j

2. >>> a

3. (3+5j)>>> a=3+0B11j

4. SyntaxError: invalid syntax

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types
Even we can perform operations on complex type

values.

Eg : 1.>>> a=10+1.5j

2. >>> b=20+2.5j

3. >>> c=a+b

4. >>> print(c)

5. (30+4j)

6. >>> type(c)

7. <class 'complex'>

Note : Complex data type has some inbuilt attributes

to retrieve the real part and imaginary part

c=10.5+3.6j

c.real==>10.5

c.imag==>3.6

We can use complex type generally in

scientific Applications and electrical

engineering Applications.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types
4. Bool data type:

We can use this data type to represent boolean values.

The only allowed values for this data type are:

True and False

Internally Python represents True as 1 and False as 0

b=True

type(b) =>bool

Eg:

a=10

b=20

c=a<b

print(c)==>True

True+True==>2

True-False==>1

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Data Types
Str type:

str represents String data type.

A String is a sequence of characters enclosed within

single quotes or double quotes.

s1='durga'

s1="durga"

By using single quotes or double quotes we cannot

represent multi line string literals.

s1="durga

soft"

For this requirement we should go for triple single

quotes(''') or triple double quotes(""")

s1='''durga

soft'''

s1="""durga

soft"""

We can also use triple quotes to use single quote or

double quote in our String.

''' This is " character'''

' This i " Character '

We can embed one string in another string

'''This "Python class very helpful" for java students'''

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Slicing of Strings
slice means a piece

[] operator is called slice operator,which can be used to

retrieve parts of String.

In Python Strings follows zero based index.

The index can be either +ve or -ve.

+ve index means forward direction from Left to Right

-ve index means backward direction from Right to Left

1. >>> s="durga"

2. >>> s[0]

3. 'd'

4. >>> s[1]

5. 'u'

6. >>> s[-1]

7. 'a'

8. >>> s[40]

IndexError: string index out of ranged u r g a

-5 -4 -3 -2 -1

 0 1 2 3 4

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Slicing of Strings

1. >>> s[1:40]

2. 'urga'

3. >>> s[1:]

4. 'urga'

5. >>> s[:4]

6. 'durg'

7. >>> s[:]

8. 'durga'

9. >>>

10. >>> s*3

11. 'durgadurgadurga'

12. >>> len(s)

13. 5

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved Words

Slicing of Strings
Note :

1. In Python the following data types are considered as

Fundamental Data types

● int

● float

● complex

● bool

● str

2. In Python,we can represent char values also by using str

type and explicitly char type is not available.

Eg:

>>> c='a'

>>> type(c)

<class 'str'>

3. long Data Type is available in Python2 but not in

Python3. In Python3 long values also we can represent

by using int type only.

4. In Python we can present char Value also by using

str Type and explicitly char Type is not available.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
We can convert one type value to another type. This

conversion is called Typecasting or Type coersion.

The following are various inbuilt functions for type

casting.

1. int

2. float

3. complex

4. bool

5. str

1. int() :

We can use this function to convert values from other

types to int

Eg :

1. >>> int(123.987)

2. 123

3. >>> int(10+5j)

4. TypeError: can't convert complex to int

5. >>> int(True)

6. 1

7. >>> int(False)

8. 0

9. >>> int("10")

10. 10

11. >>> int("10.5")

12. ValueError: invalid literal for int() with base 10: '10.5'

13. >>> int("ten")

14. ValueError: invalid literal for int() with base 10: 'ten'

15. >>> int("0B1111")

16. ValueError: invalid literal for int() with base 10: '0B1111'

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
Note :

1. We can convert from any type to int except

complex type.

2. If we want to convert str type to int type,

compulsory str should contain only integral

value and should be specified in base-10

'

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
2. float :

We can use float() function to convert other type

values to float type.

1. >>> float(10)

2. 10.0

3. >>> float(10+5j)

4. TypeError: can't convert complex to float

5. >>> float(True)

6. 1.0

7. >>> float(False)

8. 0.0

9. >>> float("10")

10. 10.0

11. >>> float("10.5")

12. 10.5

13. >>> float("ten")

14. ValueError: could not convert string to float: 'ten'

15. >>> float("0B1111")

16. ValueError: could not convert string to float: '0B1111'

Note :

We can convert any type value to float type except

complex type.

Whenever we are trying to convert str type to float type

compulsory str should be either integral or floating point

literal and should be specified only in base-10.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
3. complex() :

We can use complex() function to convert other types

to complex type.

Form-1: complex(x)

We can use this function to convert x into complex

number with real part x and imaginary part 0.

Eg :

1. complex(10)==>10+0j

2. complex(10.5)===>10.5+0j

3. complex(True)==>1+0j

4. complex(False)==>0j

5. complex("10")==>10+0j

6. complex("10.5")==>10.5+0j

7. complex("ten")

8. ValueError: complex() arg is a malformed string

Form-2: complex(x,y)

We can use this method to convert x and y into complex

number such that x will be real part and y will be imaginary

part.

Eg : complex(10,-2)==>10-2j

complex(True,False)==>1+0j

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
4. bool() : We can use this function to convert other

type values to bool type.

Eg :

1. bool(0)==>False

2. bool(1)==>True

3. bool(10)===>True

4. bool(10.5)===>True

5. bool(0.178)==>True

6. bool(0.0)==>False

7. bool(10-2j)==>True

8. bool(0+1.5j)==>True

9. bool(0+0j)==>False

10. bool("True")==>True

11. bool("False")==>True

12. bool("")==>False

bool(x)

If X is int datatype
1. 0 means False
2. Non-zero means True

If X is float datatype
1. If total number value is zero then the result is
False otherwise the result is True

If X is Complex datatype
1. If both real and imaginary parts are zero .i.e 0+0j
then the result is False otherwise the result is True.

If X is str datatype
1. If x is empty string then the result is False
otherwise the result is True

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsType Casting
5. str():

We can use this method to convert other type

values to str type.

Eg :

>>> str(10)

'10'

>>> str(10.5)

'10.5'

>>> str(10+5j)

'(10+5j)'

>>> str(True)

'True'

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsFundamental Data Types vs Immutability
All Fundamental Data types are immutable. i.e once we

creates an object,we cannot perform any changes in

that object. If we are trying to change then with those

changes a new object will be created. This

non-changeable behaviour is called immutability.

In Python if a new object is required, then PVM won't

create object im

mediately. First it will check is any object available with

the required content or not. If available then existing

object will be reused. If it is not available then only a

new object will be created. The advantage of this

approach is memory utilization and performance will be

improved.

But the problem in this approach is,several

references pointing to the same object,by using one

reference if we are allowed to change the content in the

existing object then the remaining references will be

affected. To prevent this immutability concept is required.

According to this once creates an object we are not allowed to

change content. If we are trying to change with those changes

a new object will be created.

Eg :

1. >>> a=10

2. >>> b=10

3. >>> a isb

4. True

5. >>> id(a)

6. 1572353952

7. >>> id(b)

8. 1572353952

9. >>>

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

>>> a=10

>>> b=10

>>> id(a)

1572353952

>>> id(b)

1572353952

>>> a is b

True

>>> a=10+5j

>>> b=10+5j

>>> a is b

False

>>> id(a)

15980256

>>> id(b)

15979944

>>> a=True

>>> b=True

>>> a is b

True

>>> id(a)

1572172624

>>> id(b)

1572172624

>>> a='durga'

>>> b='durga'

>>> a is b

True

>>> id(a)

16378848

>>> id(b)

16378848

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
bytes Data Type

bytes data type represents a group of byte numbers

just like an array.

Eg :

1. x = [10,20,30,40]

2. b = bytes(x)

3. type(b)==>bytes

4. print(b[0]==>10

5. print(b[-1]==>40

6. >>>for i in b : print(i)

7. 10

8. 20

9. 30

10. 40

Conclusion 1 :

The only allowed values for byte data type are 0 to 256. By

mistake if we are trying to provide any other values then

we will get value error.

Conclusion 2 :

Once we creates bytes data type value, we cannot change its

values,otherwise we will get TypeError.

Eg :

1. >>> x=[10,20,30,40]

2. >>> b=bytes(x)

3. >>> b[0]=100

4. TypeError: 'bytes' object does not support item

assignment

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
bytearray Data Type

bytearray is exactly same as bytes data type

except that its elements can be modified.

Eg 1:

1. x=[10,20,30,40]

2. b = bytearray(x)

3. for i in b : print(i)

4. 10

5. 20

6. 30

7. 40

8. b[0]=100

9. for i in b: print(i)

10. 100

11. 20

12. 30

13. 40

Eg 2:

>>> x =[10,256]

>>> b = bytearray(x)

ValueError: byte must be in range(0, 256)

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
list Data Type

If we want to represent a group of values as a single

entity where insertion order required to preserve and

duplicates are allowed then we should go for list data

type.

insertion order is preserved

heterogeneous objects are allowed

duplicates are allowed

Growable in nature

values should be enclosed within square brackets.

Eg :

1. list=[10,10.5,'durga',True,10]

2. print(list) # [10,10.5,'durga',True,10]

Eg :

1. list=[10,20,30,40]

2. >>> list[0]

3. 10

4. >>> list[-1]

5. 40

6. >>> list[1:3]

7. [20, 30]

8. >>> list[0]=100

9. >>> for i in list:print(i)

10. …
11. 100

12. 20

13. 30

14. 40

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
list is growable in nature. i.e based on our

requirement we can increase or decrease the size.

1. >>> list=[10,20,30]

2. >>> list.append("durga")

3. >>> list

4. [10, 20, 30, 'durga']

5. >>> list.remove(20)

6. >>> list

7. [10, 30, 'durga']

8. >>> list2=list*2

9. >>> list2

10. [10, 30, 'durga', 10, 30, 'durga']

Note: An ordered, mutable, heterogeneous collection

of elements is nothing but list, where duplicates also

allowed.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
tuple data type :

tuple data type is exactly same as list data type

except that it is immutable.i.e we cannot change

values.

Tuple elements can be represented within

parenthesis.

Eg :

1. t=(10,20,30,40)

2. type(t)

3. <class 'tuple'>

4. t[0]=100

5. TypeError: 'tuple' object does not support item

assignment

6. >>> t.append("durga")

7. AttributeError: 'tuple' object has no attribute

'append'

8. >>> t.remove(10)

9. AttributeError: 'tuple' object has no attribute

'remove'

Note: tuple is the read only version of list

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
range data type :

range Data Type represents a sequence of

numbers.

The elements present in range Data type are

not modifiable. i.e range Data type is

immutable.

Form 1 : range(10)

generate numbers from 0 to 9

Eg :

r=range(10)

for i in r : print(i) 0 to 9

Form 2 : range(10,20)

generate numbers from 10 to 19

r = range(10,20)

for i in r : print(i) 10 to 19

Form 3 : range(10,20,2)

2 means increment value

r = range(10,20,2)

for i in r : print(i) 10,12,14,16,18

We can access elements present in the range Data Type by using index.

r=range(10,20)

r[0]==>10

r[15]==>IndexError: range object index out of range

We cannot modify the values of range data type

Eg:

r[0]=100

TypeError: 'range' object does not support item assignment

We can create a list of values with range data type

Eg :1. >>> l = list(range(10))

 2. >>>I

 3. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
set data type :

If we want to represent a group of values

without duplicates where order is not

important then we should go for set Data

Type.

insertion order is not preserved

duplicates are not allowed

heterogeneous objects are allowed

index concept is not applicable

It is mutable collection

Growable in nature

Eg :

s={100,0,10,200,10,'durga'}

s # {0, 100, 'durga', 200, 10}

s[0] ==>TypeError: 'set' object does not support

indexing

set is growable in nature, based on our requirement

we can increase or decrease the size.

>>> s.add(60)

>>> s

{0, 100, 'durga', 200, 10, 60}

>>> s.remove(100)

>>> s

{0, 'durga', 200, 10, 60}

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
frozen data type :

It is exactly same as set except that it is immutable.

Hence we cannot use add or remove functions.

1. >>> s={10,20,30,40}

2. >>> fs=frozenset(s)

3. >>> type(fs)

4. <class 'frozenset'>

5. >>> fs

6. frozenset({40, 10, 20, 30})

7. >>> for i in fs:print(i)

8. …
9. 40

10. 10

11. 20

12. 30

13. >>> fs.add(70)

14. AttributeError: 'frozenset' object has no attribute

'add'

15. >>> fs.remove(10)

16. AttributeError: 'frozenset' object has no attribute

'remove'

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsData Type
dict data type :

If we want to represent a group of values as key-value

pairs then we should go for dict data type.

Eg :

d={101:'durga',102:'ravi',103:'shiva'}

Duplicate keys are not allowed but values can be

duplicated. If we are trying to insert an entry with

duplicate key then old value will be replaced with

new value.

Eg :

1. >>> d={101:'durga',102:'ravi',103:'shiva'}

2. >>> d[101]='sunny'

3. >>> d

4. {101: 'sunny', 102: 'ravi', 103: 'shiva'}

5. We can create empty dictionary as follows

6. d={ }

7. We can add key-value pairs as follows

8. d['a']='apple'

9. d['b']='banana'

10. print(d)

Note: dict is mutable and the order won't be preserved.

Note :

1. In general we can use bytes and bytearray data types to

represent binary information like images,video files etc

2. In Python2 long data type is available. But in Python3 it is

not available and we can represent long values also by

using int type only.

3. In Python there is no char data type. Hence we can

represent char values also by using str type.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Summary of Data Types

Datatype Description Is Immutable Example

Int We can use to represent the whole/integral
numbers

Immutable >>> a=10
>>> type(a)
<class 'int'>

Float We can use to represent the
decimal/floating point

numbers

Immutable >>> b=10.5
>>> type(b)
<class 'float'>

Complex We can use to represent the complex
numbers

Immutable >>> c=10+5j
>>> type(c)
<class 'complex'>
>>> c.real
10.0
>>> c.imag
5.0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Datatype Description Is
Immutable

Example

Bool We can use to represent the logical values(Only
allowed values are True and False)

Immutable >>> flag=True
>>> flag=False
>>> type(flag)
<class 'bool'>

Str To represent sequence of Characters Immutable >>> s='durga'
>>> type(s)
<class 'str'>
>>> s="durga"
>>> s='''Durga Software Solutions
... Ameerpet'''
>>> type(s)
<class 'str'>

bytes To represent a sequence of byte values from
0-255

Immutable >>> list=[1,2,3,4]
>>> b=bytes(list)
>>> type(b)
<class 'bytes'>

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Datatype Description Is
Immutable

Example

bytearray To represent a sequence of byte values from
0-255

Mutable >>> list=[10,20,30]
>>> ba=bytearray(list)
>>> type(ba)
<class 'bytearray'>

range To represent a range of values Immutable >>> r=range(10)
>>> r1=range(0,10)
>>> r2=range(0,10,2)

list To represent an ordered collection of objects Mutable >>> l=[10,11,12,13,14,15]
>>> type(l)
<class 'list'>

tuple To represent an ordered collections of objects Immutable >>> t=(1,2,3,4,5)
>>> type(t)
<class 'tuple'>

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Datatype Description Is
Immutable

Example

set To represent an unordered collection of unique
objects

Mutable >>> s={1,2,3,4,5,6}
>>> type(s)
<class 'set'>

frozenset To represent an unordered collection of unique
objects

Immutable >>> s={11,2,3,'Durga',100,'Ramu'}
>>> fs=frozenset(s)
>>> type(fs)
<class 'frozenset'>

dict To represent a group of key value pairs Mutable >>>
d={101:'durga',102:'ramu',103:'hari'}
>>> type(d)
<class 'dict'>

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsNone Data Type

None means Nothing or No value associated.

If the value is not available,then to handle such

type of cases None introduced.

It is something like null value in Java.

Eg:

def m1():

a=10

print(m1())

None

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsEscape Characters
In String literals we can use escape characters to

associate a special meaning.

1. >>> s="durga\nsoftware"

2. >>> print(s)

3. durga

4. software

5. >>> s="durga\tsoftware"

6. >>> print(s)

7. durga software

8. >>> s="This is " symbol"

9. File "<stdin>", line 1

10. s="This is " symbol"

11. ^

12. SyntaxError: invalid syntax

13. >>> s="This is \" symbol"

14. >>> print(s)

15. This is " symbol

The following are various important escape characters in

Python

1. \n==>New Line

2. \t===>Horizontal tab

3. \r ==>Carriage Return

4. \b===>Back space

5. \f===>Form Feed

6. \v==>Vertical tab

7. \'===>Single quote

8. \"===>Double quote

9. \\===>back slash symbol

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Reserved WordsConstants
Constants concept is not applicable in Python.

But it is convention to use only uppercase

characters if we don’t want to change value.

MAX_VALUE=10

It is just convention but we can change the

value.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Thanks!

Contact us:

training@apps2fusion.com

+44 207 101 9262

+ 1 212 404 1735

www.apps2fusion.com

http://www.apps2fusion.com

