
 📧training@apps2fusion.com 📧consulting@fusionpractices.com

PYTHON

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Operators

● Operator is a symbol that performs certain operations. Python provides the following set of

operators

● 1. Arithmetic Operators

● 2. Relational Operators or Comparison Operators

● 3. Logical operators

● 4. Bitwise operators

● 5. Assignment operators 6. Special operators

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Arithmetic Operators

+ ==>Addition

 - ==>Subtraction

 * ==>Multiplication

 / ==>Division operator

 % ===>Modulo operator

 // ==>Floor Division operator

 ** ==>Exponent operator or power operator

Eg: test.py:

1) a=10

2) b=2

3) print('a+b=',a+b)

4) print('a-b=',a-b)

5) print('a*b=',a*b)

6)print('a/b=',a/b)

7) print('a//b=',a//b)

8) print('a%b=',a%b)

9) print('a**b=',a**b)

Output:

1) Python test.py or py
test.py

2) a+b= 12

3) a-b= 8

4) a*b= 20

5) a/b= 5.0

6) a//b= 5

7) a%b= 0

8) a**b= 100

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Arithmetic Operators

Eg:

1. a = 10.5
2. b=2
3. a+b= 12.5
4. a-b= 8.5
5. a*b= 21.0
6. a/b= 5.25
7. a//b= 5.0
8. a%b= 0.5
9. a**b= 110.2

Eg:

10/2==>5.0 10//2==>5

10.0/2===>5.0

10.0//2===>5.0

Note: / operator always performs floating point
arithmetic. Hence it will always returns float
value.

But Floor division (//) can perform both floating
point and integral arithmetic. If arguments are int
type then result is int type. If at least one
argument is float type then result is float type.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Arithmetic Operators

Note: We can use +,* operators for str
type also. If we want to use + operator for
str type then compulsory both arguments
should be str type only otherwise we will
get error.
 1) >>> "durga"+10
2) TypeError: must be str, not int
3) >>> "durga"+"10"
4) 'durga10'

If we use * operator for str type then
compulsory one argument should be int
and other argument should be str type.

2*"durga"

"durga"*2

2.5*"durga" ==>TypeError: can't multiply sequence by
non-int of type 'float'

"durga"*"durga"==>TypeError: can't multiply sequence
by non-int of type 'str'

+====>String concatenation operator

* ===>String multiplication operator

Note: For any number x, x/0 and x%0 always raises
"ZeroDivisionError"

10/0 10.0/0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Relational Operators

>,>=,<,<=

Eg 1:
1. a=10
2. b=20
3. print("a > b is",a>b)
4. print("a >= b is ",a>=b)
5. print("a < b is ",a<b)
6. print("a <= b is ",a<=b)
7. a > b is False
8. a >= b is False
9. a < b is True

10. a <= b is True

We can apply relational operators for str types also

Eg 2:

1. a="durga"
2. b="durga"
3. print("a > b is",a>b)
4. print("a >= b is ",a>=b)
5. print("a < b is",a= b is ",a>=b)
6. print("a <= b is ",a<=b)
7. a > b is False
8. a >= b is True
9. a < b is False

10. a <= b is True

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Relational Operators

Eg:
1. print(True>True) False
2. print(True>=True) True
3. print(10 >True) True
4. print(False > True) False
5. print(10>'durga')
6. TypeError: '>' not

supported between
instances of 'int' and
'str'

Eg:

1) a=10

2) b=20

3) if(a>b):

4) print("a is greater than b")

5) else:

6) print("a is not greater than b"

Output is not greater than b

Note: Chaining of relational
operators is possible. In the chaining,
if all comparisons returns True then
only result is True. If atleast one
comparison returns False then the
result is False

Eg:

1) 10<20 ==>True

2) 10<20<30 ==>True

3) 10<20<30<40 ==>True

4) 10<20<30<40>50 ==>False

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Equality Operators
== , !=
We can apply these operators
for any type even for
incompatible types also
1. >>>10==20
2. False
3. >>> 10!=20
4. True
5. >>> 10==True
6. False
7. >>> False==False
8. True
9. >>> "durga"=="durga"

10. True
11. >>> 10=="durga"
12. False

Note: Chaining concept is applicable for equality operators. If
atleast one comparison returns False then the result is False.
otherwise the result is True.

Eg: 1) >>> 10==20==30==40

2) False

3) >>> 10==10==10==10

4) True

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Logical Operators

and, or ,not
We can apply for all types.

For boolean types behaviour:
and ==>If both arguments are True then only result is True

or ====>If at least one argument is True then result is True
not ==>complement

True and False ==>False
True or False ===>True
not False ==>True

For non-boolean types behaviour:

0 means False

non-zero means True

empty string is always treated as False

x and y:

==>if x is evaluates to false return x
otherwise return y

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Logical Operators

Eg:
10 and 20
0 and 20
If first argument is zero then result is zero otherwise result
is y

x or y:
If x evaluates to True then result is x otherwise result is y
10 or 20 ==> 10
0 or 20 ==> 20

not x:
If x is evaluated to False then result is True otherwise False
not 10 ==>False
not 0 ==>True

Eg:

1) "durga" and "durgasoft" ==>durgasoft

2) "" and "durga" ==>""

3) "durga" and "" ==>""

4)"" or "durga" ==>"durga"

5) "durga" or ""==>"durga"

6)not ""==>True

7) not "durga" ==>False

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Bitwise Operators

We can apply these operators bitwise.
These operators are applicable only for int and boolean
types.
By mistake if we are trying to apply for any other type then
we will get Error.
&,|,^,~,<<,>>

print(4&5) ==>valid
print(10.5 & 5.6) ==>
TypeError: unsupported operand type(s) for &: 'float' and
'float'
print(True & True) ==>valid

& ==> If both bits are 1 then only result is 1 otherwise
result is 0

| ==> If atleast one bit is 1 then result is
1 otherwise result is 0

^ ==>If bits are different then only result
is 1 otherwise result is 0

~ ==>bitwise complement operator
1==>0 & 0==>1

<< ==>Bitwise Left shift
>> ==>Bitwise Right Shift
print(4&5) ==>4
print(4|5) ==>5
print(4^5) ==>1

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Bitwise Operators

Operator Description

& If both bits are 1 then only result is 1 otherwise result is 0

| If atleast one bit is 1 then result is 1 otherwise result is 0

^ If bits are different then only result is 1 otherwise result is 0

~ bitwise complement operator i.e 1 means 0 and 0 means 1

>> Bitwise Left shift Operator

<< Bitwise Right shift Operator

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Bitwise Operators

bitwise complement operator(~):

We have to apply complement for total bits.

Eg: print(~5) ==>-6

Note:

The most significant bit acts as sign bit. 0 value represents +ve number whereas 1 represents -ve value.

positive numbers will be represented directly in the memory whereas -ve numbers will be represented
indirectly in 2's complement form.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Shift Operators

<< Left shift operator

After shifting the empty cells we have to fill with zero

print(10<<2)==>40

0 0 0 0 1 0 1 0

0 0 1 0 1 0 0 0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Shift Operators

<< Right shift operator

After shifting the empty cells we have to fill with sign bit.(0 for +ve and 1 for -ve)

print(10>>2) ==>2

0 0 0 0 1 0 1 0

0 0 1 0 1 0 0 0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Shift Operators

We can apply bitwise operators for boolean types also

print(True & False) ==>False

print(True | False) ===>True

print(True ^ False) ==>True

print(~True) ==>-2

print(True<<2) ==>4

print(True>>2) ==>0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Assignment Operators

We can use assignment operator to assign value to the variable.
Eg:
x=10

We can combine assignment operator with some other operator to form compound assignment
operator.
Eg:
x+=10 ====> x = x+10

The following is the list of all possible compound assignment operators in Python

**=
&=
|=
^=
>>=
<<=

+=
-=
*=
/=
%=
//=

>>= <<=

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Shift Operators

Eg:
1) x=10

2) x+=20

3) print(x) ==>30

Eg:
1) x=10

2) x&=5

3) print(x) ==>0

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Ternary Operators

Syntax:
x = firstValue if condition else secondValue

If condition is True then firstValue will be considered else secondValue will be considered.

Eg 1:
1) a,b=10,20

2) x=30 if a<b else 40

3) print(x) #30

Eg 2: Read two numbers from
the keyboard and print
minimum value

1) a=int(input("Enter First
Number:"))

b=int(input("Enter Second
Number:"))

3) min=a if a<b else b

Output:

Enter First Number:10

Enter Second Number:30

Minimum Value: 10

Note: Nesting of ternary
operator is possible.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Program

Q. Program for minimum of 3 numbers
1) a=int(input("Enter First Number:"))
2) b=int(input("Enter Second Number:"))
3) =int(input("Enter Third Number:"))
4) min=a if a<b and a<c else b if b<c else c
5) print("Minimum Value:",min)

Q. Program for maximum of 3 numbers
1) a=int(input("Enter First Number:"))
2) b=int(input("Enter Second Number:"))
3) c=int(input("Enter Third Number:"))
4) max=a if a>b and a>c else b if b>c else c
5) print("Maximum Value:",max)

Eg:

1) a=int(input("Enter First Number:"))

2) b=int(input("Enter Second Number:"))

3) print("Both numbers are equal" if a==b else "First
Number is Less than Second Number" if a<b else "First
Number Greater than Second Number")

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Program

Output:
D:\python_classes>py test.py
Enter First Number:10
Enter Second Number:10
Both numbers are equal

D:\python_classes>py test.py
Enter First Number:10
Enter Second Number:20
First Number is Less than Second Number

D:\python_classes>py test.py
Enter First Number:20
Enter Second Number:10
First Number Greater than Second Number

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Special Operators

Python defines the following 2 special operators
1. Identity Operators
2. Membership operators

1. Identity Operators
We can use identity operators for address comparison.
2 identity operators are available
1. is
2. is not

r1 is r2 returns True if both r1 and r2 are pointing to the
same object
r1 is not r2 returns True if both r1 and r2 are not pointing
to the same object

Eg:
1) a=10
2) b=10
3) print(a is b) True
4) x=True
5) y=True
6) print(x is y) True

Eg:
1) a="durga"
2) b="durga"
3) print(id(a))
4) print(id(b))
5) print(a is b)

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Special Operators

Eg:
1) list1=["one","two","three"]
2) list2=["one","two","three"]
3) print(id(list1))
4) print(id(list2))
5) print(list1 is list2) False
6) print(list1 is not list2) True
7) print(list1 == list2) True

Note: We can use is operator for address comparison where as == operator for content comparison

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Membership Operators

We can use Membership operators to check whether the given object present in the given
collection.(It may be String,List,Set,Tuple or Dict)

in Returns True if the given object present in the specified Collection

not in Returns True if the given object not present in the specified Collection

Eg :

1) x="hello learning Python is very easy!!!"
2) print('h' in x) True
3) print('d' in x) False
4) print('d' not in x) True
5) print('Python' in x) True

Eg :

1) list1=["sunny","bunny","chinny","pinny"]
2) print("sunny" in list1) True
3) print("tunny" in list1) False
4) print("tunny" not in list1) True

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Operator Precedence

If multiple operators present then which operator will be evaluated first is decided by operator
precedence.
Eg:
print(3+10*2) 23
print((3+10)*2) 26

The following list describes operator precedence in Python

() Parenthesis
** exponential operator
~,- Bitwise complement operator,unary minus operator
*,/,%,// multiplication,division,modulo,floor division
+,- addition,subtraction
<<,>> Left and Right Shift
& bitwise And

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Operator Precedence

^ Bitwise X-OR
| Bitwise OR
>,>=,<,<=, ==, != ==>Relational or Comparison operators
=,+=,-=,*=... ==>Assignment operators is ,
is not Identity Operators
in , not in Membership operators
not Logical not
and Logical and
or Logical or

Eg:
1) a=30
2) b=20
3) c=10
4) d=5
5) print((a+b)*c/d) 100.0
6) print((a+b)*(c/d)) 100.0
7) print(a+(b*c)/d) 70.0
8)
9) 10) 3/2*4+3+(10/5)**3-2
11) 3/2*4+3+2.0**3-2
12) 3/2*4+3+8.0-2
13) 1.5*4+3+8.0-2
14) 6.0+3+8.0-2
15) 1.

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Mathematical Functions (math module)

A Module is collection of functions, variables and classes etc.
math is a module that contains several functions to perform mathematical operations

If we want to use any module in Python, first we have to import that module.

import math

Once we import a module then we can call any function of that module.

import math
print(math.sqrt(16))
print(math.pi)
4.0 3.141592653589793
We can create alias name by using as keyword.
import math as m

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Mathematical Functions (math module)

Once we create alias name, by using that we can access functions and variables of that module

import math as m
print(m.sqrt(16))
print(m.pi)

We can import a particular member of a module explicitly as follows
from math import sqrt
from math import sqrt,pi

If we import a member explicitly then it is not required to use module name while accessing.
from math import sqrt,pi
print(sqrt(16))
print(pi)
print(math.pi) NameError: name 'math' is not defined

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Mathematical Functions (math module)

important functions of math
module:

ceil(x)
floor(x)
pow(x,y)
factorial(x)
trunc(x)
gcd(x,y)
sin(x)
cos(x)
tan(x)
....

important variables of math
module:

pi3.14
e===>2.71
inf ==>infinity
nan ==>not a number

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Mathematical Functions (math module)

Q. Write a Python program to find area of circle

pi*r**2

from math import pi
r=16
print("Area of Circle is :",pi*r**2)

OutputArea of Circle is : 804.247719318987

 📧training@apps2fusion.com 📧consulting@fusionpractices.com

Thanks!

Contact us:

training@apps2fusion.com

+44 207 101 9262

+ 1 212 404 1735

www.apps2fusion.com

http://www.apps2fusion.com

